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VOLTAGE-CONTROLLED OSCILLATOR WITH
TIME-DELAY FEEDBACK

INTRODUCTION

A voltage-controlled oscillator (VCO) with time-delay feedback has been designed as
a frequency-agile, noise-degenerated radar frequency source. This frequency source uses a
solid state VCO with a noise-degenerated negative feedback loop with an interferometer as
a frequency discriminator. Because of the periodicity of responses of the interferometer,
the oscillator operation is stable at many frequencies across the band of interest. For this
reason, both low noise from the degeneration and frequency agility from the periodic
response are obtained in one source. This report analyzes the steady state and transient
responses of the frequency source. The steady state solution will provide information
necessary in choosing the loop parameters that set the noise degeneration level. The trans-
ient response yields information on loop response time, and thus the switching time needed
for frequency agility.

GENERAL DESCRIPTION

Figure 1 is a block diagram of a voltage-controlled oscillator (VCO) with a time-delay
feedback loop containing an interferometer and a video amplifier. The interferometer’s
output is proportional to the phase difference between the direct and delayed outputs
from the VCO. If the VCO output is given by cos(wt), the interferometer output after
the high-frequency component is filtered out, is given by

e(t) = sinwt.

v o, (1) oo-K!oc(n
=)~ veco

PHASE

VIDEO
AMPLIFIER

Fig. 1 — Voltage-controlled oscillator with time-delay feedback

Manuscript submitted June 27, 1977.
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additional phase shift

Therefore, interferometer output voltage vs frequency is a sine wave, so responses repeat,
spaced by a frequency equal to the inverse of the delay time, as shown in Fig. 2. For a
delay time of 25 ns, the periodicity equals 40 MHz. The whole response curve can be
shifted by adding additional phase shift in the direct path [1]. A 90-degree phase shift
will shift the whole response pattern one-fourth of its period (10 MHz). In this manner,
the interferometer can operate with a +20-MHz pull-in range and still produce a response
every 10 MHz across the band. Because of this periodicity of responses, stable operation
occurs at many frequencies across the band of interest, providing frequency agility.

ANALYSIS

The system shown in Fig. 1 was analyzed, with the input voltage as a step function
of an amplitude v, to study the effectiveness of the time delay feedback. When input
voltage v is zero, the output angular frequency of the VCO is assumed to be w, and is
related to time delay r as w, = 2aN/r, where N is an integer. When this relation holds,
w, becomes one of the stable frequencies, and the output voltage of the interferometer
will be zero. Now, if input voltage v is applied, the output frequency of the VCO will
change. That change in frequency is given by

Aw = Ky e,(t) 1)

N
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where e, (t) is the voltage at the VCO input and K, is the modulation sensitivity in radians
per volt.

Let ¢(t) represent the phase shift due to this frequency change during a time t. The
quantity ¢(t) is given by

t

o(t) = -f Ky e.(t) dt. (2)
o
Then, interferometer output voltage e(t), after the high-frequency component is filtered
out, is
e(t) = Ky sin[¢(t) - o(t - 1], 3)
where K, is the phase-detector sensitivity constant in volts per radian.

For [¢(t) - #(t - 7)] < 1, which is satisfied near the stable frequency of operation,
one can approximate:

e(t) =~ K, [¢(t) - o(t - 7)]. (4)

Taking Laplace transforms of Egs. (1), (2), and (4) yields

ASUs) = -Kq E(s) (5)
®(s) = -Ky E (s)/s (6)
E(s) = K, [®(s) D(s)e™7¢]. (1)
In addition, From Fig. 1 we have
E(s) =<+ E(s) G(s), (8)

where G(s) is the transfer function of the video amplifier.
Using Egs. (5) to (8), we can show that

-'sz
K KyG(s)[1-e"T5] + 5

AQ(s) = 9)

The amplifier in the feedback loop is assumed to be a combination video amplifier
and low-pass filter with combined transfer function

a G,

G(s) = 10)

s+ Q
where G, is the low-frequency gain of the amplifier and « is the 3-dB cutoff point.
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Substituting Eq. (10) in Eq. (9) gives the normalized response

+
F(s)=AQ(s)= s+« (11)
-Kov  §2 + 50 + A(1 - e7T5)
where A = K, Ko G,a.
Steady State Seolution
A steady state solution can be obtained easily from Eq. (11), as
Aw(=) _ .. 5 1
=L t)i="1u BEE - 12
~-K,yv ;"_‘;Co) IT-.SO(S) K Ky G, T+1 12)

This steady state solution can be used [2] to find the amount of VCO noise degenera-
tion possible with a time-delay feedback system. Let Af,;. represent the FM noise of
VCO without feedback. The corresponding equivalent noise voltage at the VCO input is
21Afyec/(-Kg). Let Af be the VCO FM noise with feedback. Then, substituting
v =2nAf,./(-Ky) and Aw(eo) = 2rAf in Eq. (12), we obtain

Afosc

Af = ———
IS E R, 6, 141

(13)
From Eq. (13) it may be noted that the VCO noise is degenerated by a factor of
(K, Ko G, 7 +1). Therefore, to reduce VCO noise, it is necessary that

(K; Ky G, 7+1)> 1. (14)

Stability Condition

The condition for stability of the feedback system is discussed in Appendix A and is
given by

K, Ko Gyar2 < 712/2, (15)
which is identical to Eq. (Al11).

For the system to be stable and produce noise degeneration, K,, K5, G,, «, and 7
should be chosen such that the conditions in both Egs. (14) and (15) are satisfied.

Transient Response

Formally, the inverse Laplace transform of Eq. (11) gives the transient response.
However, the inverse transform is not readily available. The following procedure [3] is
used to obtain the transient response. Repeating Eq. (11), we have

4

|
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s+ o
F(s) = . (16)
s2 + s+ A - Ae™™s

Let z =52 + sae + A. Then

+
R
—t

§

F(s) = . 17)
Al o
2
If the expansion of the type
—1—=1+x+x2 + ..,
1-x
is used, Eq. (17) becomes |
+ 2 :
F(s) = > : = (1 +§ e +ﬁ; =275 + ) (18)
Taking the inverse Laplace transform of Eq. (18) yields
f(t) = fi(t) + Au(t - TVfo(t - 7) + A2u(t - 27)fg(t - 27) + ... (19)
where
fa(t) = -1 [__8_101___] (20)
(s2 + s + A)"

and u(t) is a unit step function.

The transient response given in Eq. (19) appears to contain an infinite number of
terms. However, for any given finite time ¢, only a finite number of terms are nonzero.
Also, each individual term has a physical significance related to the time-delay feedback.
In the time range 0 < t < 7, only the first term is nonzero and the rest of the terms are
zero, so that the first term gives the system response before the VCO output is applied
to the phase detector through the delayed path. In the range 7 <t < 27, the signal
through the delayed path is applied to the phase detector, and the transient response is
represented by the first two terms, since the remaining terms are still zero. In general,
for range (M - 1)1 < t < Mr, the first M terms give the transient response because the
higher order terms are still zero.

The transient response is not yet complete, because the inverse transform shown in

Eq. (20) is not readily available. A closed form solution for f,(¢) ic obtained by using the
following procedure. First, consider the inverse Laplace transform,

1
S,(t) =L | —————|.
R e

This can be written as
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1
S,(t) = L1 | ———— (21)
(s +a)? (s +b)"
O % [ o? : 2
where a = 3 -Jjwy, b= 3 +jwy,and w; = |/A e It will be shown later that a2/4 <A.

Therefore, w; is real.

The inverse Laplace transform shown in Eq. (21) is readily available [4]. It is given
by
(a+b)t

LSy ek A a+b

where I, _,, is a modified Bessel function of the first kind. Substituting for a and b from
Eq. (21), we obtain

at
T 0 L s
S,(t) = (T\/;ﬁ (2_w1> e 2J,_ 1 (wyt) (22)
where J,, _,, is the Bessel function of the first kind.

From Egs. (20) and (21) it may be noted that £, (t), which can be obtained if s, (t)
is known, is given by

fn(t) = sn(t) = Sn(+0) +« sn(t) (23)
where s, (t) is the first derivative of s,(t).

By notin‘g 5,(+0) = 0 and substituting s,(t) from Egs. (22) and (23) and simplifying,
we can show that

at

t n-% - e

In terms of spherical Bessel functions j,, one can show [5] that

1 £\ = ; oo
f"(t)=(’1_‘—1-).!<2_&)1> (wyt) e # Jn-z(wlt)"'z—wlln-l(wlt) (25)

Hence, the transient response is given by Eq. (19), with f,(t) as shown in Eq. (25).
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NUMERICAL RESULTS

With Egs. (19) and (25), the transient response is computed for typical values of the
system parameters, K, = 0.2 V/rad, K, = 3.5 X 108 rad/sV, « = 6.283 X 103 rad/fs
(corresponds to an amplifier filter bandwidth of 1 kHz), and 7 = 25 ns. Figure 3 shows
the normalized transient response with the above parameters and for the amplifier gains

T =25ns
Q = 6283 RAD/s

NORMALIZED RESPONSED (-Aw/Kp V)

(o} to 20 30 40 50 60 70
TIME (ns)

Fig. 3 — Transient response

[}

of 60 dB (G, = 103), 70 dB (G, = 3.162 X 103), 80 dB (G, = 10%), 85.0823 dB (G,
1.7952 X 10%), and 90 dB (G, = 3.162 X 10%). The corresponding values of A72 ;
( = K,K,G,ar?) are 0.275, 0.869, 2.75, 72/2, and 8.69. For the system to be stable,

A72 must be less than 72/2 ( = 4.9348). From Fig. 3, it is evident that for A72 >

4.9348 the system transient response is oscillatory with increasing amplitude with time. This
indicates that the system is unstable. For A72 = 722, the response is oscillatory with
approximately constant amplitude, indicating that the stability condition given by Eq. (15) is
highly accurate. For A72 = 2,75, the transient response is oscillatory, but the oscillations

are damped with time, suggesting that the system is stable. As the amplifier gain is reduced,
making A72 smaller, the damped oscillations almost vanish for 472 = 0.869 (which may be
called the critically damped case). For smaller values of A7Z, the transient response decreases
with time (similar to an exponentially decreasing curve) and takes longer to reach steady state.

These results indicate that a value for A72 ~ 1 may be a best compromise for faster
loop response and acceptable damped oscillations. For the critically damped case, the
loop response reaches steady state in a time span of about 87. For a given value of A72,
the loop response time is smaller for smaller values of 7, as shown in Fig. 4. However,
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Fig. 4 — Frequency response with 7 as a parameter

if the time is normalized with respect to 7, the transient responses for both cases are
approximately similar, except that the steady state respons: is smaller for smaller 7. Since
A = K,K,G,a, changing K; and K, will have the same effe.t as changing G,. However,
changing « has approximately the same effect on the transi«t response as changing G,
but the steady state response is independent of . For these rea:ns, a should be chosen
as small as possible, and K;K,G,, should be chosen as large as possible, for a given 7 such
that A72 = 1 and K;K,G,7 > 1, which will satisfy the requirements of noise degeneration
and system stability conditions given by Egs. (14) and (15).

CONCLUSIONS

A voltage-controlled oscillator with time-delay feedback has been analyzed. By properly
choosing system parameters, low noise from the degeneration and frequency agility from the
periodic response can be obtained in one source. The conditions for system stability and the
amount of noise degeneration are expressed in terms of system parameters. Effects of differ-
ent parameters on system stability and noise degeneration are discussed in detail. It is shown
that the open-loop gain should be chosen as large as possible for good noise degeneration,
and the bandwidth should be adjusted to meet the stability condition.
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Appendix A
STABILITY CRITERION

The Nyquist stability criterion is used to find the condition under which the feedback
system is stable and to identify the system parameters on which this condition depends.
This criterion furnishes a graphical method for determining the stability of a system. The
system is stable if a plot of its open-loop transfer function Z(s) for a succession of values
of s, encircling the entire right half of the s-plane in the clockwise direction, makes a
number of counterclockwise revolutions about the critical point (-1 + jO) equal to the
number of the poles of Z(s) in the right half of the s-plane.

"'o'K2°c(n
vCcoO —

' e, (1)

_ INTERFEROMETER _

DELAY T
00000

| PHASE
VIDEO | DETECTOR

PHASE
AMPLIFIER | SHIFTER I‘

Fig. A1 — Voltage-controlied oscillator with time-delay feedback

For the system in Fig. Al, the open-loop transfer function is given by

P A(1-e7T)

Z(s) —————S(s s (A1)
From Eq. (Al), note that there are no poles in the right half of the s-plane. The only

pole at S = -« is in the left half. Also, there are no poles on the imaginary axis. Since

Z(s) becomes zero for s > o, to apply the Nyquist criterion one needs a polar plot of

Z(s) with s = jw and for the range of values ~© < w < oo only. As can be noted, a polar

plot for the frequency range -° to 0 is the mirror image about the horizontal axis of

the plot for the frequency range 0 to 9. Thus, to evaluate the polar plot of a transfer

function, the only frequency range to be considered is from 0 to e. By substituting

s = jw in Eq. (A1) and finding real part Zp (jw) and imaginary part Z;(jw) of transfer

function Z(jw), it can be shown that

: A sinwTt wT
7 = — it AL —
g (Jw) 2 a0t <0('r e 2 sin 2> (A2)
s ; sin(wTt/2) sin(wr/Z)]
Zi(jw) %5 % ot [smwr +ar @r2) . (A3)
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From Egs. (A2) and (A3), note that there is no simple way of sketching the polar
plot if parameters A, «, and 7 are not specified. Fortunately, for the system under con-
sideration the range of parameters is such that a simplification is possible. For ar of the
order of 10-4, the first term in the parentheses on the right hand side of Eq. (A2) can be
neglected, except possibly when w7 = 2Nw. (In that case, both terms will be close to
zero and Zp (jw) will be very small.) Similarly, the second term in the brackets of Eq. (A3)
can be neglected, except possibly at or very near w7 = Nm. In that case, both terms will be
very small, which in turn makes Z; small. These approximations and observations are used
only to simplify the procedure in obtaining the polar plot. No approximation is needed in
obtaining the exact condition for stability, as will be shown later. Keeping aside the term
A/(a? + w?2), which is common for both Zp and Z;, it may be noted that Zp varies as
-2 sin2(w7/2) and Zj varies as -sin(wr). These two functions are sketched in Fig. A2 as a
function of cwr.

/<SIN (wTt)
/\ Fig. A2 — Variation of Zj, and Z,, except

2w 3w ar for the factor A/(a2 + w?)

In the range of parameters of interest, « is of the order of 104 and 7 is of the order
of 1078, Therefore, for w7 > m/2, w > a and the factor A/(c2 + w2) ~ A/w?2. Using
these observations and Fig. A2, one can sketch the polar plot of Z(jw), which is shown
in Fig. A3 for the range 0 < w < . For the range -0 < w < 0, the polar diagram will
be the mirror image about the Zp axis, and it is not shown. From the sketch in Fig. A3

2

Zp

Fig. A3 — Sketch of a polar plot for
Z(jw), for A > A,

it is clear that if the real part Zp < -1 ( |Zg | >l) when Z; = 0, the critical point is
encircled counterclockwise by the polar plot. Therefore, the system will be unstable. Since
the magnitude of Z, depends on A, for the system to be stable A should be smaller than
that for which Zp = -1 and Z; = 0.

Next, it is possible to find the value of A corresponding to Z, = -1 and Z; = 0. This
will be done using Eqgs. (A2) and (A3), first without making any approximations. Equating
Z; = 0, we obtain from Eq. (A3)

10
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sinwr = -2 X gin2 £, (A4)
w
Equating Z = -1, we obtain from Eq. (A2)
el e £ sinwr - 2sin2 <7 = 1. (A5)
Substituting from Eq. (A4) for sinw7 in Eq. (Ab) yields
2A sin2 “’?T = w2. (A6)
From Egs. (A4) and (A6), we obtain
T o
cos — = - (A7)
2  J2a
or
2 -1
W, = w= —T-cos -a/y/2A (A8)

where w, is the frequency at which Z; = -1 and Z; = 0, for given values of 7, a, and A.
Substituting w, from Eq. (A8) for w in Egs. (A6) and (A7), we obtain

24 - a2 = w, =

S|

cos™1 <-c\'/\/ﬂ>. (A9)

Equation (A9) is the exact stability condition from which can be found the value of
A = A, that satisfies Eq. (A9) for given values of a and 7. The system will then be stable
if the parameters are chosen such that A < A,.. However, Eq. (A9) is a transcedental equa-
tion that is difficult to solve and does not provide convenient interpretation. Fortunately,
for the range of system parameters in which we are interested, a2 < 24, which allows us
to neglect a2 in Eq. (A9) and approximate cos-1 (-a/\/TZ) ~ 7/2. Then, from Eq. (A9)
we have

A, = n2/272 (A10)
and
w, = 7T,

Therefore, for the system to be stable, the system parameters should be chosen such that
AT2 < 712/2, (A11)

The numerical results presented in this report validate the accuracy of the approxima-
tions made in arriving at Eq. (A11).

11




